Alcohol, Phenol, Ether Problems | On the following compound identify the primary, secondary, tertiary, and quaternary carbons. | | | | | |--|--|---|--|--| | CH ₃ CH ₂ CH ₂ CH(C | H ₃)CH ₃ | | | | | | | | | | | | | | | | | | olecules. Label each as ei | ther an alcohol, a phenol, o | | | | an ether. | | | | | | CH ₃ -O-CH ₃ | CH ₃ CH ₂ -OH | CH₃OH | | CH ₃ CH ₂ -O-CH ₃ | CH ₃ CH ₂ CH ₂ CH(C
Shown below are several m
an ether.
CH ₃ -O-CH ₃ | CH ₃ CH ₂ CH ₂ CH(CH ₃)CH ₃ Shown below are several molecules. Label each as ei an ether. CH ₃ -O-CH ₃ CH ₃ CH ₂ -OH | | | CH_3 OH Shown below are the structures of several alcohols. Tell whether the alcohol is 4. primary, secondary, or tertiary. CH₃OH CH₃ - CH CH_3 CH_3 - C - CH_3 CH_3CH_2OH OH 5. Write the IUPAC names of the following alcohols. > CH₃OH CH₃CH₂OH CH₃CH₂CH₂OH CH₃CHCH₃ CH₃CH₂CH₂CH₂OH CH₃CH₂CHCH₃ OHOH How does hydrogen bonding explain the elevated boiling point of alcohols? 6. | 7 | Label each | compound a | s soluble | slightly | soluble | or insolub | de in | water | |----|-------------|------------|------------|----------|---------|------------|--------|--------| | 1. | Lauci cacii | compound a | s soluble, | Singing | Soluble | or msorue | 111 Ju | water. | CH₃OH CH₃CH₂OH CH₃CH₂CH₂CH₂CH₂OH _____ 8. Label each of the following compounds as neutral or acidic. CH₃-O-CH₃ CH₃CH₂-OH _____ 9. For each of the following compounds tell how long it would take for a white cloudy layer to form when mixed with the Lucas Reagent. CH₃OH CH₃ - CH | OH CH_3 _____ 10. Predict the organic product for the following reactions. $$CH_3$$ | $CH_3 - C - CH_3 + Cr_2O_7^{-2} \Rightarrow$ | OH $$CH_3CH_2OH + Cr_2O_7^{-2} \rightarrow$$ $$\begin{array}{c} CH_3 \\ | \\ CH_3 - CH \\ | \\ OH \end{array} + Cr_2O_7^{-2} ~ \rag{9}$$ - 11. What color change does one observe when acidified dichromate reacts with an alcohol? - 12. Which of the following compounds will react with acidified dichromate solution? CH₃OH CH₃OH CH₃ | CH | OH
 | OH
 | |----------------------|---| | ОН
 | OH | | Write out the equati | on for the reaction of phenol with water. | | | | | 6. | Label each of the following ethers as either aliphatic or aromatic. | | | | | | |----|---|--|--|--|--|--| | | CH ₃ CH ₂ -O- | -O- | CH ₃ -O-CH ₂ CH ₃ | | | | | | | | | | | | | 7. | Name each of the following ethers. | | | | | | | | CH ₃ CH ₂ -O- | -O- | CH ₃ -O-CH ₂ CH ₃ | | | | | | CH ₃ -O-CH ₃ | CH ₃ CH ₂ -O-CH ₂ CH ₃ | CH₃-O- | | | | | | | | | | | |